Study on Bayes Discriminant Analysis of EEG Data
نویسندگان
چکیده
OBJECTIVE In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. METHODS In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. CONCLUSIONS Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.
منابع مشابه
EEG-Based Discrimination of Imagined Speech Phonemes
This paper reports positive results for classifying imagined phonemes on the basis of EEG signals. Subjects generated in imagination five types of phonemes that differ in their primary manner of vocal articulation during overt speech production (jaw, tongue, nasal, lips and fricative). Naive Bayes and linear discriminant analysis classification methods were applied to EEG signals that were reco...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملExecuted Movement Using EEG Signals through a Naive Bayes Classifier
Recent years have witnessed a rapid development of brain-computer interface (BCI) technology. An independent BCI is a communication system for controlling a device by human intension, e.g., a computer, a wheelchair or a neuroprosthes is, not depending on the brain’s normal output pathways of peripheral nerves and muscles, but on detectable signals that represent responsive or intentional brain ...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل